Mark scheme – Enthalpy and Entropy

Q	uestio n	Answer/Indicative content	Marks	Guidance
		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 25.55 kJ mol ⁻¹ OR 25550 J mol ⁻¹ award first 4 marks	5 (AO 2.2×4)	
1		$\Delta S = 238 - (198 + 2 \times 131) \checkmark$ $= -222 (J K^{-1} mol^{-1}) OR -0.222 (kJ K^{-1} mol^{-1}) \checkmark$ $\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -91 - (525 \times -0.222)$ OR $\Delta G = -91000 - (525 \times -222) \checkmark$ $= 25.55 \text{ kJ mol}^{-1} OR 25550 \text{ J mol}^{-1} \checkmark$	(AO 3.2×1)	ALLOW ECF IGNORE units at this stage Units for ΔG required ALLOW 26 kJ mol ⁻¹ OR 26000 J mol ⁻¹ up to calculator value.
		(Reaction is) not feasible AND $\Delta G > 0 \checkmark$	5	
2		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4 AO2.4× 4	Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ $= -0.133 \text{(kJ K}^{-1} \text{mol}^{-1}\text{)}$ OR $-133 \text{(J K}^{-1} \text{mol}^{-1}\text{)}$ Sign required IGNORE units Calculator: $-0.133221 \text{ (kJ K}^{-1} \text{ mol}^{-1}\text{)}$ $-133.221 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$ ALLOW ECF from incorrect temperature. Using -133 : $S(\text{Na}_2\text{S}_2\text{O}_3) = 372.4 - 349.5 - (-133)$ $= 22.9 + 133$ $= (+)156 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$ 3 SF required

Part 2: Calc of S(Na₂S₂O₃)

1 mark

CORRECT use of standard S data in question

√

Seen anywhere (could be within an expression) e.g.

- 372.4 [S(Na2S2O3) + (5 × 69.9)]
- OR 372.4 (5 × 69.9)
- OR 372.4 349.5
- OR 22.9

IGNORE sign, i.e. ALLOW -22.9, etc

CORRECT calculation of $S(Na_2S_2O_3)$ using candidate's calculated ΔS in Part 1 to 3 SF

1 mark √

ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

Examiner's Comments

This was a testing question. This question discriminated very well but lower ability candidates struggled to score marks.

This unfamiliar scenario required candidates to first decide on a strategy for solving the problem. Candidates needed to use the Gibbs' equation and supplied data to determine the entropy change. They then needed to combine this value with other supplied data to determine the unknown standard entropy. The data provided were all standard, signified by the standard sign.

Candidates were expected to use 298 K as the standard temperature to first determine the entropy change. Although many candidates chose 298 K, many different temperatures were seen, with 273 K and 286.5 K (the temperature change in 5a(i)) being common. Some candidates were obviously thrown by the absence of a stated temperature and many omitted T from their Gibbs' equation, using $\Delta G = \Delta H - \Delta S$ instead.

This calculated value for ΔS (correct: -0.133 kJ) then needed to be combined with the supplied entropy data to determine the unknown standard entropy (correct: 156 J) to three significant figures. ECF could be applied during marking but this second calculation first required a unit conversion from kJ to J. Many candidates did not make this conversion. Some candidates made errors combining this information, e.g. incorrect signs, adding rather than subtracting and no unit conversions. Finally, some candidates, successful in their calculation, did not follow the instruction to quote their answer to three significant figures.

Exemplar 5 shows a very clear response. The candidate has used the Gibbs' equation to determine ΔS first in kJ and then, in preparation for the second part of the determination, in J. The ΔS value is combined with the supplied entropy data to obtain the unknown entropy change, shown by 'x' in the response. This calculated value is then rounded to the required three significant figures.

Exemplar 5

	Total	4	$AG = AH - TAS$ $-16.1 = -55.6 - 2984S$ $2984S = -39.7$ $\Delta S = -0.1332214765 $
3 i	Equation Ba(NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq) → BaSO ₄ (s) + 2NaNO ₃ (aq) √ Entropy change and explanation entropy decreases OR entropy change negative AND (BaSO ₄) solid / ppt has less disorder / more order / fewer ways of arranging energy / less freedom / less random particles / dispersal of energy √	2	ALLOW multiples M2 is dependent on BaSO ₄ (s) (even if formula is incorrect – eg Ba(SO ₄) ₂ (s)) seen as a product in the attempted equation as long as reactants are not solid. BaSO ₄ solid / ppt may be assumed from BaSO ₄ (s) seen in the attempted equation. Examiner's Comments Candidates who correctly identified barium sulfate as a solid product tended to realise that entropy had decreased, although a significant number failed to state that this decrease in entropy was as a result of less disorder being created.
ii	Equation ½ I₂(s) → I(g) √ state symbols required Entropy change and explanation entropy increases OR entropy change positive AND gas has more disorder / less order / more ways of arranging energy / more freedom / more random particles / more dispersal of energy √	2	DO NOT ALLOW $I_2(s) \rightarrow 2I(g)$ DEPENDENT on $\frac{1}{2}I_2(s) \rightarrow I(g)$ OR $I_2(s)$ $\rightarrow 2I(g)$ Examiner's Comments Most candidates failed to produce a correct equation for the standard enthalpy change of atomisation of iodine. Of those who were able to produce the correct equation, a significant number failed to state that the increase in entropy was as a result of increased disorder being created.
	Total	4	

_					
4	а		$\Delta G = \Delta H - T\Delta S$ linked to $y = mx + c$ (somewhere) \checkmark gradient = $-\Delta S \checkmark$ P: $\Delta H / \text{enthalpy change } \checkmark$ (temperature) for reaction to be feasible/unfeasible Q: OR (temperature) at which feasibility changes \checkmark	4	Could be: $\Delta G = -\Delta ST + \Delta H$ - sign required ALLOW $\Delta S = -gradient$ ALLOW 'point of feasibility' For Feasibility: ALLOW can take place/happen OR is spontaneous IGNORE 'minimum/maximum temperature' Examiner's Comments For the minority of candidates who recognised that the Gibbs' equation could be expressed in y = mx + c format, this question was very straightforward. For others, the realisation that Q was the point at which feasibility changed was the only mark scored.
	b	i	(Species have) different states / phases √	1	Examiner's Comments All but a few candidates realised that the term heterogeneous equilibrium could be applied because carbon monoxide was in a different physical state to the other reactants and products.
		ii	$(K_{P} =) \rho(CO(g))^4 \checkmark$	1	Allow species without state symbols and without brackets, e.g. Pco^4 , $ppCO^4$, PCO^4 , $p(CO^4)$ etc. DO NOT ALLOW square brackets Examiner's Comments Marks were awarded for less than perfect versions of $K_p = p(CO(g))^4$. As long as a 'p' or a 'P' was seen and curved, rather than square, brackets, along with the correct power, the mark was awarded. This was to differentiate between the candidates who knew that only the partial pressures of gaseous species should feature in a K_p expression from the candidates who used all four species to write the expression.
		iii	ΔG at 25 C $\Delta G = \Delta H - T\Delta S = 676.4 - (298 \times 0.7031)$ $= (+) 467 \text{ (kJ mol}^{-1}) \mathbf{OR} \text{ (+) } 466876$ $\text{ (J mol}^{-1}) \checkmark$	3	IGNORE units ALLOW (+) 467 up to calculator value of

	Non-feasibility statement		466.8762 correctly rounded
	Non-feasible when $\Delta G > 0$ OR $\Delta G > 0$ OR $\Delta H > T\Delta S \checkmark$		ECF for any positive value determined in M1
	Minimum temperature minimum temperature = $\frac{\Delta H}{\Delta S} = \frac{676.4}{0.7031}$ = 962(.0) K \checkmark		ALLOW 962 up to calculator value of 962.0253165 correctly rounded Examiner's Comments Candidates coped well with the calculation and, apart from a significant number of rounding errors, could provide a positive value of ΔG and therefore could show the reaction to not be feasible. Candidates were also able to calculate that the minimum temperature required for the reaction to be feasible was 962.023165 K which was sensibly rounded to 962 K. A significant number of candidates chose to give 963 K as the final answer despite showing a correct value to several decimal places in their working.
i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -110.5 , Award 3 marks. Correct expression $-13.5 = (4 \times -393.5) - (-1118.5 + 4 \times \Delta_i H(CO)) \checkmark$ Correct subtraction using ΔH and $\Delta_i H(Fe_3O_4)$ $4 \times \Delta_i H(CO) = (4 \times -393.5) - (-1118.5)$ $+ 13.5$ $= -442(.0) \text{ (kJ mol}^{-1}) \checkmark$ Calculation of $\Delta_i H(CO)$ formation $\Delta_i H(CO) = -\frac{442}{4} = -110.5 \text{ (kJ mol}^{-1}) \checkmark$	3	For answer, ALLOW -111 (kJ mol ⁻¹) NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g393.5 OR -13.5 may be missing Common errors (+)110.5

					(+)177.875 / 177.88 / 177.9 /	Wrong cycle, no 4CO2	1 mark
					178 -360.5	Used 118.5	2 marks
					Any other number: marking point for e with ONE error onl e.g.395.3 for 393.5	expressions using A ly e.g. one transcri	ALL values
					Examiner's Comr The general method was known to most examples of avoidate example, transcriptivalues (-393 for -1118.5). Candidate show every step in allow method mark absence of a correction	od of determining \(\Delta\) at candidates, but n able errors were se tion errors in recor 393.5 and -118.5 t ates should be advi a their calculation.	nany een. For ding Δ _f H for sed to Γhis would
			Total	12			
5	а	i	$2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(g) \checkmark$	1	ALLOW multiples, e.g. 6H ₂ S(g) + 3O ₂		₂ O(g)
			FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 3.05 × 10 ⁷ (g) award 3 marks				
		ii	volume of H ₂ S = $1.50 \times 10^8 \times 16(0)/100 = 2.4(0) \times 10^7 \text{ dm}^3 \text{ of H}_2\text{S} \checkmark$ $n \text{ (H}_2\text{S)} (= n(\text{S}))$	3			
			$2.4(0) \times 10^{7}/24.0 \text{ mol} = 1(.00) \times 10^{6} \text{ mol } \checkmark$ Mass S = 1(.00) × 10 ⁶ × 95(.0)/100 × 32.1 = 3.05 × 10 ⁷ (g) \checkmark		ALLOW ECF from 3 SF AND standa		of H₂S
			FIRST, CHECK FOR A VALUE OF ΔG. IF answer = -89.96(34) (kJ mol ⁻¹) award 3 marks			,====	
	b	i	ΔS calculation (2 marks) $\Delta S = (3 \times 31.8) + (2 \times 188.7) - [(2 \times 205.7) + (248.1)]$ OR $\Delta S = 472.8 - 659.5 \checkmark$	5			
			$\Delta S = -186.7 \text{ J mol}^{-1} \text{ K}^{-1} \text{ OR } -0.1867 \text{ kJ mol}^{-1} \text{ K}^{-1} \checkmark$				

ΔG calculation (1 mark)	
$\Delta G = \Delta H - T \Delta S = -145.6 - (298 \times -0.1867)$	
ALLOW (-) 187 OR 0.187	
$= -89.96(34) \text{ (kJ mol}^{-1}) \checkmark$	
Comment (1 mark) – sign shows the (forward) reaction	
is feasible ✓ ALLOW ECF from incorrect Δ	\H
TO TOURS OF THE PROPERTY OF TH	Δ1 1
Temperature at which feasibility changes (1 mark) ALLOW -90 up to calculator	value of −89.9634
correctly rounded	
$T = \frac{\Delta H}{\Delta S} = \frac{-145.6}{-0.1867} = 780 \text{ k}$ ORA for comment about – significant s	gn required for
feasibility	
AND comment that $\triangle G$ OR $\triangle H - T\triangle S = 0$ \checkmark	
FIRST, CHECK THE ANSWER ON ANSWER LINE	
IF answer = −296.8 (kJ mol ⁻¹) award 2 marks	
+ Δ _f H(SO2)) √	
ALLOW ECF	
Calculation of Δ _f H(SO ₂) formation	
$\Delta_f H(SO_2) = (2 \times -241.8) - (2 \times -20.6) + 145.6$ ALLOW 1 mark for (+)296.8	
$= -296.8 \text{ (kJ mol}^{-1}) \checkmark$ Subtraction the wrong way ar	round
- 290.0 (KS IIIOI) V Subtraction the wrong way ar	
Total 11	
one mole can be stated just of	anaa EITUED with
gaseous ions OR with aqueou	
gaseous ions OR with aqueon	us ions, e.g.
a dimeta of manageric	
1 mole of gaseous id	
hydrated ions / aque	
Gaseous ions form	
hydrated ions / aque	ous ions
ALLOW 1 mol for 1 mole	
(enthalpy change for) 1 mole of gaseous ions OR 1	R 'energy
6 a mole of hydrated ions / aqueous ions ✓ 2 required'	
gaseous ions forming aqueous / hydrated ions ✓	
For 2nd mark	
IGNORE gaseous ions are hy	
IGNORE gaseous ions dissol	
Particles formed not stated	
ALLOW 1 mark for:	
1 mole of gaseous IONS form	
hydrated atoms / particles /	molecules
Examiner's Comments	
Examiner's Comments	

aqueous solutions. Most candidates were awarded both marks for a clear definition stating that 1 mole of gaseous ions formed 1 mole of aqueous ions. Some candidates instead gave a definition for enthalpy change of solution. IF extra energy level is above top line OR below bottom line, DO NOT ALLOW mark for species on this line. 4 marks for species AND state symbols on all 4 energy levels (including added energy level) Same as left-hand response 2K⁺(g) + SO₄^{2−}(g) • (2 □) C OR (2 □) -320 **BUT** top arrow shown **TO** $2K^+(g) + SO_4^{2-}(g)$ so ¥ 2K+(aq) + SO₄2-(g) ✓ last mark not awarded 2K+(aq) + SO₄2-(aq) 3/5 marks OR 24 1 mark for B, C AND D labels OR enthalpy values X 2K+(aq) + SO₄2-(g) AND arrow directions correct ✓ **ALLOW** $K_2SO_4(aq)$ for $2K^+(aq) + SO_4^{2-}(aq)$ 2K*(aq) + SO₄2-(aq) ALLOW arrows not touching lines. Same as left-hand response **Direction** is important: **FROM** $2K^{+}(g) + SO_4^{2-}(g)$ line BUT bottom arrow shown TO K₂SO₄(s) so last FROM K₂SO₄(s) line mark not awarded 3/5 marks 5 b Extra energy line placed ABOVE top line 3 out of 4 marks awarded for energy lines and species. 2K⁺(g) + SO₄²⁻(g) (2×) C 2K+(aq) + SO₄2-(g) Top arrow is shown **FROM** 2K⁺(g) + SO₄²⁻(g) and arrow directions correct. Letter labels correct so last mark is awarded. 4/5 marks 2K*(aq) + SO₄2-(aq) ALLOW C and D with associated labels, the 2K⁺(aq) + SO₄²⁻(g other way round: ¥2K+(g) + SO₄2-(aq) (2 |) C OR (2 |) -320 2K+(aq) + SO₄2-(aq) Extra energy line placed BELOW bottom line OR 24 K₂SO₄(s) 3 out of 4 marks awarded for energy lines and species. State symbols are essential Top arrow is shown **FROM** K₂SO₄(s) and arrow directions correct. Letter labels correct so last mark is IF no extra energy level is shown with C and D awarded. combined forming 2K+(aq) + SO₄2-(aq), 4/5 marks No mark for the extra energy level with species

		2K'(g) + SO ₄ ²⁻ (g) (2×) C (No mark for labels as C and D are combined Therefore 3 max for species on energy levels provided Examiner's Comments This question assessed enthalpy changes in aqueous solutions. Many candidates successfully completed the energy cycle to obtain all marks. Correct species and state symbols are essential in such cycles and marks could not be awarded for species such as K ⁻ (g) or SO ₄ ⁻ (g). Poorlyprepared candidates often scored no marks at all, having shown random species on the energy levels. Candidates are advised to ensure that the state symbols (s) and (g) are clearly distinguished.
	ii	Δ <i>H</i> (hydration) SO ₄ ^{2−} = −1099 (kJ mol ^{−1}) √	1	ONLY correct answer Examiner's Comments This question assessed enthalpy changes in aqueous solutions. Although many candidates correctly calculated the lattice enthalpy, errors were common. A common error was use of -320 (instead of 2 × -320) giving -1419. Answer = -1099 kJ mol ⁻¹
С	i	Aqueous particles are more disordered than solid (particles) OR Solid particles are more ordered than aqueous (particles) ✓	1	For particles, ALLOW ions DO NOT ALLOW molecules / atoms ALLOW 'When the state changes from solid to aqueous, disorder increases' For more disordered, ALLOW less ordered / more freedom / more ways of arranging energy / more random For aqueous particles, ALLOW particles in solution IGNORE dissolved Examiner's Comments This question assessed enthalpy changes in aqueous solutions.

				In this part, candidates needed to recognise that solid particles are forming aqueous particles with an increase in disorder. Many candidates incorrectly used 'liquid' instead of aqueous and others started from gaseous particles, perhaps confusing enthalpy change of solution with hydration. Contact TL if solely entropy approach rather than ΔG
	ii ii	Calculation (2 marks) $\Delta G = 24 - (298 \times 0.225)$ OR 24 - 67.05 (in kJ) OR 24000 - (298 × 225) OR 24000 - 67050 (in J) ✓ Calculation of ΔG (IGNORE UNITS) $\Delta G = -43$ (kJ mol ⁻¹) OR -43000 (J mol ⁻¹) ✓ Subsumes 1st calculation mark	3	ALLOW -43.1 OR -43.05 (calculator value) ALLOW 1 calculation mark (IGNORE units) for -67.(026) OR -67026 ECF from 225 instead of 0.225 18.(375) OR +18.375 ECF from 25 instead of 298 ALLOW other ECF from ONE error in 1st step of calc, e.g. incorrect value for ΔH such as -1099 from 3bii \rightarrow -1166.05 TAKE CARE that same units used for ΔH and
		Reason for solubility $ \text{Calculated value of } \Delta G \text{ that is } \textbf{negative} $ $ \textbf{AND} $		ΔS NO reason mark from a +ve value of ΔG Examiner's Comments
		Statement that: ΔG is negative OR ΔG < 0 OR -43 < 0 OR ΔH - $T\Delta S$ < 0 OR $T\Delta S$ > ΔH \checkmark		This question assessed enthalpy changes in aqueous solutions. The majority of candidates recognised that the Gibbs' equation was required. Usually the correct enthalpy change of +24 kJ mol ⁻¹ was used to obtain a negative value for ΔG . The majority then went on to link the negative value to feasibility for the dissolving process. A significant number of candidates used the wrong enthalpy change (or no enthalpy change at all) or mixed units of J and kJ. Answer: $\Delta G = -43$ kJ mol ⁻¹
		Total	12	
7	i	5 mol / molecules (of gas) forms 3 mol / molecules (of gas) ✓	1	ALLOW reaction forms fewer moles / molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)

		Examiner's Comments
		This part was usually answered correctly in terms of fewer moles or molecules of gaseous products, with most candidates linking also to decreasing disorder. A significant number just mentioned decreasing disorder without including the reason for the decrease.
ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer =(+)131 (J K ⁻¹ mol ⁻¹), award 2 marks	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g164 may be missing ALLOW FOR 1 mark
		-131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 -75 wrong sign for 206 250 wrong sign for 238
ii	S = (+)131 (J K ⁻¹ mol ⁻¹) ✓	Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g.146 for 164 Examiner's Comments
		Although this part required candidates to calculate a standard entropy, rather than the more common entropy change assessed in previous exam papers, most candidates dealt with the problem with ease. Examiners rewarded partial success, usually where there was one incorrect sign or omitting to divide by 4.
		Answer: S = +131 J K ⁻¹ mol ⁻¹
	NOTE: DO NOT ALLOW answer to (ii) for ΔG calculation	
iii	ΔG calculation: 2 marks	ALLOW Δ <i>G</i> correctly calculated from 3 SF up to calculator value of -185.128

	ΛG = -234 - 298 × -0.164 √		
	= -185 (kJ mol ⁻¹) ✓		ALLOW working in J, <i>ie</i> : ΔG = −234000 − 298 × −164 ✓
			= −185000 (J mol ⁻¹) √
iii	IGNORE units (even if wrong) −185 subsumes 1st mark)	2	ALLOW 1 mark for use of 25 OR mixture of kJ and J, e.g. $\Delta G = -234 - 25 \times -0.164 = -229.9$ $\Delta G = -234 - 298 \times -164 = +48638$
			ALLOW ECF if calculated value for ΔG is +ve Then 'correct' response for 3rd mark would be not feasible / not spontaneous AND $\Delta G > 0$ / $\Delta H - T\Delta S > 0$
			Examiner's Comments
iii	Feasibility comment for negative ΔG answer: 1 mark (Forward) reaction is feasible / spontaneous AND $\Delta G < 0$ / $\Delta H - T\Delta S < 0$ \checkmark	1	The majority of candidates used the Gibbs equation to obtain the correct value of ΔG . Many weak candidates used –164, rather than –0.164, in the expression, resulting in a positive value for ΔG . A few used 25 °C instead of 298 K. Candidates are far more adept with this calculation that used to be the case.
			The comment on feasibility was marked dependent on the sign obtained for ΔG .
			Answer: ΔG = −185 kJ mol ⁻¹
			ALLOW (When $\Delta G = 0$) $T = \frac{-234}{-0.164} = 1427 \text{ K OR } \frac{-234000}{-164} = 1427 \text{ K}$
	$(\Delta G =) -234 - 1427 \times \frac{-164}{1000} = 0$ (calculator 0.028(kJ) OR 28 (J		For 2nd mark, IF ΔG is +ve from (iii) ALLOW ECF for: Above 1427 K, reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens
V	2 nd mark only available if 1 st mark has been awarded	2	IGNORE LESS feasible
	(Above 1427K / 1154°C), reaction is not feasible / not spontaneous ✓ OR 1427 K is maximum temperature that reaction		IGNORE comparisons of the signs of $T\Delta S$ and ΔH , e.g IGNORE $T\Delta S$ is more negative than ΔH
	happens		Examiner's Comments
			Although answered well, this part discriminated well. Two strategies were see. The first and more common repeated the ΔG calculation from (iii) to show that ΔG was just positive (0.028 kJ mol ⁻¹) and hence that the reaction was now not feasible. The second strategy showed that

					1427K and therefore 1154°C is the temperature at which ΔG has a value of 0 kJ mol ⁻¹ . Although most candidates were successful here, many weaker candidates seemed unaware of what to do. It was then common to see random numbers being used and °C, instead of K, in the ΔG expression (much more common than in (iii). The best candidates also identified that the reaction becomes unfeasible above 1147°C. The explanation was marked consequentially of the sign obtained in (iii).
			Total	8	
8	а	i	(entropy) decreases AND (solid / ice has) less disorder / more order / fewer ways of arranging energy / less freedom / less random molecules ✓	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered Examiner's Comments This part was usually answered, the best responses linking the state change from liquid to solid with increased order and a decrease in entropy.
		ii	(entropy) increases AND (CO₂) gas is formed ✓ Could be from equation with CO₂(g)	1	increases and reason required for mark ASSUME gas is CO ₂ unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H ₂) ALLOW more gas Examiner's Comments Candidates were expected to predict an increase in entropy from formation of a gas (CO ²). This was communicated either in text or as an equation with state symbols and both approaches were credited.
		iii	entropy decreases AND 3 mol O_2 form 2 mol O_3 OR $3O_2 \rightarrow 2O_3$ OR 3 mol gas form 2 mol gas \checkmark	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $1\frac{1}{2}O_2 \rightarrow O_3$; $O_2 + \frac{1}{2}O_2 \rightarrow O_3$ ALLOW $O_2 + O \rightarrow O_3$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $O_2 + O \rightarrow O_3$ IGNORE reaction forms fewer moles / molecules

			Examiner's Comments
			This part caused more problems as candidates were expected to recognise the different gaseous moles on formation of ozone. Candidates were expected to state the 3:2 ratio from $3O_2(g) \rightarrow 2O_3(g)$ or 2:1 ratio from $O_2 + O \rightarrow O_3(g)$; the best responses did this, either by quoting the molar ratio or from use of the equation. Vaguer responses such as 'efewer moles' were not credited. Strangely, some candidates gave a 'correct' response for the reverse reaction.
			FULL ANNOTATIONS MUST BE USED
b	CARE: responses involve changes of negative values Feasibility AND ΔG Reaction becomes / is less feasible / not feasible AND ΔG increases OR ΔG becomes / is less negative / more positive OR $\Delta G > 0$ OR $\Delta H - T\Delta S > 0$ OR $\Delta H - T\Delta S$ becomes / is less negative / more positive OR $\Delta H > T\Delta S$ becomes / is less negative / more positive OR $\Delta H > T\Delta S \checkmark$ OR $T\Delta S$ becomes / is more negative than $\Delta H \checkmark$	2	As alternative for 'less feasible' ALLOW 'less spontaneous' OR a comment that implies 'reaction no longer take place' ALLOW for ΔG increases ΔG < 0 only at low T DO NOT ALLOW TΔS > ΔH (comparison wrong way round) NOTE: Last statement automatically scores 2nd mark ALSO IGNORE significance IGNORE magnitude for 1st marking point DO NOT ALLOW TΔS increases IGNORE significance
	Effect on <i>T</i> Δ <i>S T</i> Δ <i>S</i> becomes more negative OR <i>T</i> Δ <i>S</i> decreases OR − <i>T</i> Δ <i>S</i> becomes more positive OR − <i>T</i> Δ <i>S</i> increases OR magnitude of <i>T</i> Δ <i>S</i> increases OR <i>T</i> Δ <i>S</i> increases ✓		APPROACH BASED ON TOTAL ENTROPY: Feasibility with increasing temperature Reaction becomes less feasible / not feasible AND ΔS - ΔH / T OR ΔStotal decreases / less positive √ Effect on ΔH / T ΔH / T is less negative OR ΔH / T increases OR -ΔH / T decreases OR magnitude of ΔH / T decreases √ Examiner's Comments Comparison of negative numbers is a difficult skill, shown by the many contradictions seen in

				the candidate responses. The key to success here was to compare the two key terms, ΔH and $T\Delta S$ and to relate these to feasibility from the sign of ΔG . Problems arose in responses that ignored the negative signs leading to ambiguous statements. The required ' $T\Delta S$ becomes more negative' was often communicated as ' $T\Delta S$ increases'. The latter term is ambiguous, its meaning depending on whether the sign is included or omitted. The comparison of $T\Delta S$ with ΔH caused more problems with many responses seen of $T\Delta S > \Delta H$. Mathematically, the opposite is true as both values are negative. The better approach was to communicate this relationship in text as ' $T\Delta S$ is more negative that ΔH .' The responses from the best candidates used this precise language but many candidates did not score marks here because of the ambiguity.
C	í	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks $\Delta S = (33 + 3 \times 189) - (76 + 3 \times 131)$ $= (+)131 (J K^{-1} mol^{-1}) \checkmark$ $\Delta G = 115 - (298 \times 0.131)$ $= (+) 75.962 OR 75.96 OR 76.0 OR 76 (kJ K^{-1} mol^{-1}) \checkmark$	2	DO NOT ALLOW –131 ALLOW ECF from incorrect calculated value of ΔS Examiner's Comments Almost all candidates successfully showed that the entropy change was 131 J K ⁻¹ mol ⁻¹ . The majority then went on to use the Gibbs equation to obtain the correct value of ΔG. It was only the weaker candidates who succumbed to use of 131, rather than 0.131 in the expression, resulting in a negative absolute temperature. Some candidates used 25 °C instead of 298 K. Candidates are advised to check that correct provided values had been used: a common transcription error was use of –155 instead of –115 for the ΔH value. Answer: 76.0 kJ K ⁻¹ mol ⁻¹
	ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 878 OR 877.9 OR 877.86, award 2 marks	2	ALLOW total entropy statement: $\Delta S(\text{total}) = 0$ OR $\Delta S(\text{total}) > 0$

	(Minimum temperature when) $\Delta G = 0$ OR $\Delta H - T\Delta S = 0$ OR (For feasibility) $\Delta G = 0$ OR $\Delta G < 0$ OR $\Delta H - T\Delta S < 0$ OR $T = \frac{\Delta H}{\Delta S} \checkmark$ $T = \frac{115}{0.131} = 878 \text{ K} \checkmark$		ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i) ALLOW 878 up to calculator value of 877.862595 correctly rounded Examiner's Comments This part was answered correctly by almost all candidates, using the provided ΔH value and the candidate's calculated ΔS value from (c)(i). Some candidates unexpectedly converted their correct K value into °C. The only significant error seen here was with incorrect rounding. Answer: 878 K
	Total	9	
9	ΔH calculation from experiment $q = 100 \times 4.18 \times 20.5$ OR 8569 J OR 8.569 kJ (1) Amount of butan-1-ol = $0.259 = 3.5 \times 10^{-3}$ mol (1) $\Delta H = -2448$ kJ mol ⁻¹ (1) ΔS calculation $\Delta S = S_{\text{products}} - S_{\text{reactants}}$ $\Delta S = (4 \times 214) + (5 \times 70) - [(228) + (6 \times 205)]$ OR $\Delta S = 1206 - 1458$ (1) $\Delta S = -252$ J K ⁻¹ mol ⁻¹ OR -0.252 kJ K ⁻¹ mol ⁻¹ (1) ΔG calculation $\Delta G = \Delta H - T\Delta S$ $\Delta G = -2448 - (298 \times -0.252)$ (1) $\Delta G = -2373$ (kJ mol ⁻¹) (1) Total	7	allow calculator value for $\Delta H = -2448.285714$ correctly rounded to three or more significant figures mark for use of correct expression with ΔS in kJ K ⁻¹ mol ⁻¹ allow three or more sig figs for ΔG